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Abstract

It is complicated to promote a continuum quantum theory with fermions
to a lattice. This problem is caused by an unexpected appearance of extra
states in the lattice theory - the fermion doubling problem. In [1], the
authors proved that under certain conditions, it is actually impossible to
find a lattice that simulates a single Weyl fermion.

We realize that one of the crucial assumptions in their proof is the con-
servation of electric charge - a condition which is not held in topological
superconductors. A common toy model for topological superconductors is
the one-dimensional Kitaev wire [2]. Thus, we propose a similar two-band
three-dimensional lattice that has a single Weyl fermion in the low-energy.
We find this effective theory by combining the degrees of freedom around
the nodal points and then integrating out the extra degrees of freedom using
the Schrieffer-Wolff transformation.
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Lay Summary

The Weyl Fermions are emergent excitations in special materials called Weyl
semimetals. They usually occur in pairs of left and right because of a mathe-
matical no-go theorem that guarantees the doubling of Weyl fermions going
from discrete systems (lattices) to continuous. We predict that some su-
perconductors might be able to bypass this no-go theorem since they are
known not to have a conserved charge - one of the conditions under which
the theorem was proven.
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Chapter 1

Introduction

The Dirac equation was formulated by Dirac in 1928, who found the ”square
root” of the Klein-Gordon operator using 4×4 anticommuting matrices. The
equation is a crucial non-trivial representation of the Lorentz algebra, and
it predicted the existence of spin and antiparticles. It is now one of the
most common equations in Quantum Field Theory, as it can describe the
behavior of fermions under Lorentz invariance.

The Dirac equation finds use in condensed matter theory as well, even
without the explicit Lorentz invariance [4–6]. This is because relativistic
invariance sometimes emerges out in a low-energy limit, with a different
”speed of light”. These solid state realizations offer a playground to simulate
the relativistic physics on a lower energy scale.

In the band description, the degeneracy points of the energy bands are
monopoles of the Berry curvature [7]. If these degeneracy points are on the
Fermi surface, the corresponding phase is called a Weyl semimetal [8, 9].
The effective degrees of freedom are Weyl fermions. A potential realization
of such a state was proposed in a family of materials called the pytochlore
iridates [5, 6].

It is challenging to find a single kind of Weyl fermion (left-handed or
right-handed) in the effective theory of these band-touchings because of the
fermion doubling problem. The fermion doubling problem was originally for-
mulated for putting neutrinos on a lattice. The neutrinos were expected to
be Weyl fermions, but it was hard to find a lattice theory that preserved the
chiral invariance. The no-go theorem put forward by Nielsen and Ninomiya
conclusively eliminated any attempts to do that - it gave a topological proof
that it cannot be done [1, 10, 11].

What is the fermion doubling problem? If one wants to put on a lattice
chiral fermions of one type (for instance, left-handed electron neutrino νL
and electron eL with weak hypercharge Y = 1

2 and the right-handed electron
eR with Y = 1 according to the Weinberg-Salam model), the lattice must
also contain the same chiral fermions of the other type (right-handed netrino
νR and electron eR with Y = 1

2 and a left-handed electron eL with Y = 1
in this case). This means that in the low-energy effective theory, both those
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Chapter 1. Introduction

Lagrangians must feature simultaneously and any scattering processes may
involve back-scattering as well. So any lattice cannot reduce to just one
single Weyl fermion in the continuum. This is the no-go theorem put forward
in [1, 11]. The chiral anomaly is non-zero in the continuous theory, but it
cancels out on the lattice.

Note that this formulation of the fermion doubling problem is slightly
different from the one in lattice QCD, where it is not possible to keep chiral
invariance on the scale of the fundamental lattice if we want to eliminate
unwanted lattice fermions in the low-energy regime. In the latter case, there
are unwanted extra Dirac fermions due to the doubling of the constituent
Weyl particles. The spectral multiplication of particles may be avoided by
breaking the chiral invariance on the lattice [12–14].

There are connections between superconductors and Weyl semimetals
[15, 16]. It was pointed out that the nodes in the pairing function of A
phase of superfluid He3 lead to a realization of Weyl Fermions [17]. The
Cooper pair condensation spontaneously violates charge conservation, so
they often contain Majorana modes. One of the assumptions behind the
no-go theorem is conservation of charge, so it might be possible to bypass
the theorem to realize a single Weyl fermion. To this end, we use a 3-d
version of a Kitaev wire [2] and combine the low-energy degrees of freedom
called the nodal points into an effective Weyl fermion.

Chapter 2 provides a brief review of the Dirac theory. We then review
the proof of the no-go theorem to see what conditions may be violated in
a condensed-matter setting. In Chapter 3, we review the physics of the
Kitaev wire and discuss the use of Majorana basis in studying fermionic
models. In Chapter 4, we propose a Kitaev-like lattice completion of a 3-d
p-wave superconductor and we then take a low-energy limit by invoking the
Schrieffer-Wolff transformation.
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Chapter 2

Fermion Doubling

2.1 Dirac Theory

We begin this discussion with a quick review of the Dirac theory, its Lorentz
invariance, momentum representation, symmetries, and quantization.

2.1.1 Dirac Equation

The Clifford Algebra is given by:

{γµ, γν} = 2ηµν (2.1)

One can construct many other representations of the Clifford algebra by tak-
ing any invertible matrix V and using the transformation γ̃µ → V γµV −1.
However, up to this equivalence, it turns out that there is a unique irre-
ducible representation of the Clifford algebra. For example, one particular
choice of γ matrices called the Weyl or the chiral representation, is -

γ0 = τx, γi = −iτy ⊗ σi (2.2)

Here, τ i are Pauli matrices in the left-right basis (which we introduce in
Section 2.1.3), and σi are Pauli matrices in the spin-basis. Under a Lorentz
transformation, Λ given by

Λ = exp

(
1

2
ΩρσM

ρσ

)
, (2.3)

where Mµν are the generators of the Lorentz transformation and Ωµν repre-
sent the numbers representing the finite Lorentz transformation, the fields
transform as

ψα(x) → S[Λ]αβψ
β(Λ−1x) (2.4)

where S[Λ] is the representation of a finite Lorentz transformation for the
spinor fields

S[Λ] = exp

(
1

2
ΩρσS

ρσ

)
, (2.5)

3



2.1. Dirac Theory

The generators Sµν are given by -

Sµν =
1

4
[γµ, γν ] (2.6)

We define the Dirac adjoint ψ̄(x) = ψ†(x)γ0 and find that the following
first-order Lagrangian density is Lorentz invariant -

S =

∫
d4x L =

∫
d4x ψ̄(x) (iγµ∂µ −m)ψ(x) (2.7)

Thus, using the Euler-Lagrange equations, we find the Dirac equation -

δ[S] = 0 =⇒ ∂L(x)
∂ψ̄(x)

− ∂µ

(
∂L(x)

∂
(
∂µψ̄(x)

)) = 0 =⇒ (iγµ∂µ −m)ψ(x) = 0

(2.8)
The Hamiltonian is given by -

H =

∫
d3x

(
˙̄ψ(x)

∂L(x)
∂ ˙̄ψ(x)

− ∂L(x)
∂ψ̇(x)

ψ̇(x)− L(x)

)

=

∫
d3x ψ̄(x)

(
−iγi∂i +m

)
ψ(x)

(2.9)

2.1.2 Momentum-Space Representation

We can express the fields in the momentum basis by taking a Fourier trans-
form. An arbitrary solution of the fields may be written as -

ψ(x) =
2∑

s=1

∫
d3p

(2π)3
1√
2Ep

[
bspu

s(p)eip.x + (csp)
†vs(p)e−ip.x

]
ψ†(x) =

2∑
s=1

∫
d3p

(2π)3
1√
2Ep

[
cspv

s(p)†eip.x + (bsp)
†us(p)†e−ip.x

] (2.10)

where ±Ep are the eigenvalues and us(p) and vs(p) are the eigenvectors of
the Hamiltonian matrix -

H(p) = γ0(γipi +m) (2.11)

and bsp and csp are arbitrary coefficients. Thus the energy Ep is given by

Ep =
√
p2 +m2 (2.12)

4



2.1. Dirac Theory

2.1.3 Global Symmetries

The U(1) symmetry of the field is expressed by the global transformation -

ψ(x) → eiαψ(x), ψ†(x) → e−iαψ†(x) (2.13)

The corresponding conserved Noether current is given by -

jµ(x) = ψ̄(x)γµψ(x) (2.14)

which means that j0(x) = ψ†(x)ψ(x). Thus the Noether charge Q =∫
d3xψ†(x)ψ(x) must be a conserved quantity, and it corresponds to the

number of particles. In the momentum basis, it may be expressed as -

N =

∫
d3p

(2π)3

2∑
s=1

(
(bsp)

†bsp − (csp)
†csp

)
(2.15)

We denote γ5 = iγ0γ1γ2γ3. In our representation, it is given by −τ z. The
chiral symmetry of the field is expressed by the global transformation -

ψ(x) → eiαγ
5
ψ(x), ψ†(x) → e−iαγ5

ψ†(x) (2.16)

This is a symmetry of the kinetic term, but not the mass term. The corre-
sponding conserved Noether current is given by -

jµ5(x) = ψ̄(x)γµγ5ψ(x) (2.17)

One may also define the conserved currents -

jµL(x) =
1

2

(
jµ(x)− jµ5(x)

)
, jµR(x) =

1

2

(
jµ(x) + jµ5(x)

)
(2.18)

Therefore under chiral symmetry, the number of left-handed and the number
of right-handed fermions are separately conserved. These are called the Weyl
fermions. Further notice that the Hamiltonian matrix is block diagonal -

H(p) = γ0(γipi) = τx(−iτy ⊗ σipi) = τ z ⊗ σipi (2.19)

Thus the Hamiltonian of the right-handed and left-handed Weyl fermion are
given by σipi and −σipi respectively.

5



2.1. Dirac Theory

2.1.4 Discrete Symmetries

Parity, denoted by P, sends (t, x) → (t,−x). The parity operator P should
reverse the momentum of the particle without flipping its spin. It is a
Hermitian, unitary and linear operator and its action is given as follows -

Pψ(t, x)P = γ0ψ(t,−x) (2.20)

Time reversal, denoted by T, sends (t, x) → (−t, x). It should reverse the
momentum of the particle as well as flips its spin. It is a Hermitian, anti-
unitary and anti-linear operator and its action is given as follows -

Tψ(t, x)T = −γ1γ3ψ(−t, x) (2.21)

The charge conjugation C exchanges the particles and the anti-particles. It
is a Hermitian, unitary and linear operator and its action is given as follows
-

Cψ(x)C = −i
(
ψ̄(x)γ0γ2

)T
(2.22)

2.1.5 Quantization

The standard equal-time anticommutation relations of the field in the posi-
tion space are -

{ψα(x), ψβ(y)} = {ψ†
α(x), ψ

†
β(y)} = 0

{ψα(x), ψ
†
β(y)} = δαβδ

(3)(x− y)
(2.23)

As usual in the second quantization, we promote the arbitrary coefficients bsp
and csp to quantum operators. Thus, the creation and annihilation operators
obey the following anticommutation rules -

{bsp1 , b
r
p2} = {(bsp1)

†, (brp2)
†} = 0, {bsp1 , (b

r
p2)

†} = δsrδ
(3)(p1 − p2)

{csp1 , c
r
p2} = {(csp1)

†, (crp2)
†} = 0, {csp1 , (c

r
p2)

†} = δsrδ
(3)(p1 − p2)

{bsp1 , c
r
p2} = {(bsp1)

†, (crp2)
†} = {bsp1 , (c

r
p2)

†} = {(bsp1)
†, crp2} = 0

(2.24)

Thus the vacuum, the lowest energy state may be defined as -

bsp |0⟩ = csp |0⟩ = 0 (2.25)

which means that the Hamiltonian may be written as -

H =

∫
d3p

(2π)3

2∑
s=1

Ep

(
(bsp)

†bsp + (csp)
†csp

)
(2.26)

6



2.2. Fermion Doubling

2.2 Fermion Doubling

It is hard to find a lattice with a single kind of Weyl fermion in its low-
energy theory. The continuum of most lattice theories leads to both left and
right-handed fermions in the low-energy limit. This is because of the chiral
anomaly, which cancels out in a lattice but not in the continuous theory.
We review the proof of the article [1] in this section.

2.2.1 Weyl Semimetal Phase

Before looking at a more intuitive proof of the no-go theorem, we review a
brief argument using the concepts of Weyl nodes and Berry curvature. If
the band structure of a Hamiltonian is given by the equation -

H(k) |u(k)⟩ = ϵ(k) |u(k)⟩ (2.27)

then one may define the Berry connection as -

⟨u(k)|u(k+ δk)⟩ = 1 + δk ⟨u(k)|∇k|u(k)⟩ = eiA(k).δk (2.28)

where A(k) = −⟨u(k)|∇k|u(k)⟩ is the Berry connection. The curl of the
Berry connection is the Berry curvature Ω(k). The monopoles of the Berry
curvature take the form:

Ω(k) ≈ ± k− k0

|k− k0|3
(2.29)

around the point k = k0 such that the Chern number C is given by -

C =
1

2π

∫
Ω(k).dS = ±1 (2.30)

These points, associated with the singularity of the Berry curvature, turn
out to be the points where two bands touch each other, and are called Weyl
nodes. In Section 2.2.4, we would see how the band structure in the vicinity
of these points looks like that of the Weyl fermions. When these nodes exist
exactly at the Fermi energy, we call the phase of the system to be a Weyl
semimetal.

If the Chern number is +1(−1), it is a right(left)-handed Weyl fermion.
Since ∇.Ω(k) is 0 when A(k) is well-behaved (the divergence of a curl is 0),
using the Stokes theorem, we get that the net Chern number of all the Weyl-
nodes must be 0. Thus the compactness of the momentum-space manifold
played a role in cancelling the anomaly.

7



2.2. Fermion Doubling

2.2.2 Assumptions

The crucial ingredients of this theorem are the existence of the charge -
which means that the field must be complex and local. The proof hinges
on the fact that the momentum space of the lattice theory is periodic, i.e.
forms the Brillouin zone

− π < pi ≤ π (2.31)

which is the hypertorus S1 × S1 × S1. Assuming that the lattice constant
is one, this is because the Fourier transform of the field ψ(n⃗) is invariant
under p⃗→ p⃗+ 2π × κ⃗ for 3-d integers κ⃗.

The general class of theories chosen are:

S = −i
∫
dt
∑
x⃗

˙̄ψ(t, x⃗)ψ(t, x⃗)−
∫
dt
∑
x⃗,y⃗

ψ̄(t, x⃗)H(x⃗− y⃗)ψ(t, y⃗) (2.32)

for the N -component complex fermion field ψ(x⃗, t). The conditions assumed
on the action are:

1. Locality: H(x) → 0 fast enough as |x⃗|→ ∞ so that H̃(p) is a
smooth function. This means that the theory is local on the lattice. Thus,
the eigenvalues ωi(p) are smooth as well, except for any degeneracy points.
Typically, these non-analyticities may be resolved by redefining the order of
the eigenvalues.

2. Translation invariance
3. Hermiticity of the Hamiltonian H
These three conditions allow the use of Fourier transforms and band-

theory to describe our system. Thus, we may solve the eigenvalue equation
-

H̃(p)ψ(p) = ωi(p)ψ(p), i = 1, 2, ..., N (2.33)

and we get N ordered energy bands -

ω1(p) > ω2(p) > .... > ωN (p) (2.34)

with their domain as the momentum-space hypertorus. Defining the eigen-
values in an ordered fashion means that they would be non-analytic functions
of p at degeneracy points.

There are assumptions on the charges Q as well:
1. Q is exactly conserved even at the scale of the fundamental lattice.
2. Q is locally defined. Thus it may be written as a sum of local charge

densities:
Q =

∑
x⃗

j0(x⃗) (2.35)

8



2.2. Fermion Doubling

3. Q is quantized.
Since the global Noether charge is quantized, the corresponding sym-

metry transformation must be compact, which allows the use of complex-
fermions.

2.2.3 Proof in 1+1 dimensions

The bands of a 1 + 1 dimensional Hamiltonian H̃(p) usually do not touch.
This is because imposing the condition that the two eigenvalues of a generic
Hermitian matrix are equal imposes three set of independent conditions,
thus it is (almost) impossible to find a one-dimensional momentum p that
satisfies all three of them. For example, a two-level Hamiltonian may be
expanded as a sum of Pauli matrices:

H̃(p) = A(p) +B(p)σx + C(p)σy +D(p)σz (2.36)

and the corresponding eigenvalues are A(p)±
√
B(p)2 + C(p)2 +D(p)2. So

the degeneracy of the bands at any momentum p∗ requires B(p∗) = 0,
C(p∗) = 0 and D(p∗) = 0, which are all separate conditions in the absence
of a specific symmetry.

In 3+1 dimensions, a Weyl point consists of band-crossings at the Fermi
energy. Here, we would consider the low-energy excitations of each band
separately, and show that the no of emergent left movers and right movers
would be the same. Since there are no degeneracies, any band ωi(p) must be
analytic in p according to our assumptions. Thus we may take the following
Taylor expansion:

ωi(p) = ϵF + (p− pF)
dωi

dp

∣∣∣∣
p=pF

+O
(
(p− pF)

2
)

(2.37)

If we subtract the constant energy ϵF and define a practical momentum,
ppr = p− pF, then the dispersion relation for small ppr is:

ωi(p) =
dωi

dp

∣∣∣∣
p=pF

ppr (2.38)

which is a relativistically invariant dispersion relation if we consider |dωi/dp|
at p = pF as the speed of light. Thus, there is an emergent Lorentz symmetry
in this case.

The group velocity of a localized wave-packet (or the velocity of a clas-
sical particle given by Euler-Lagrange equations) is given by dωi/dp|p=pF ,
thus its sign represents if the particle is moving towards the right or left.

9



2.2. Fermion Doubling

Figure 2.1: A generic band-structure in 1 + 1 dimensions with four bands.
The line ω(p) = 0 indicates the Fermi level. Since the ordering of bands
is defined as in Equation (2.34), we see that only ω2(p) and ω3(p) touch
the Fermi energy. The effective theory at each of those points is a Weyl
fermion, each with a different ”speed of light” dωi/dp|p=pF and different
Fermi-momentum pF. There are three left-moving and three right-moving
Weyl fermions in this picture. Notice that - i) none of the bands touch ii)
the points p = π and p = −π are identified

10



2.2. Fermion Doubling

Since any band ωi(p) is an analytic function on the circle S1, it must be a
closed curve. Therefore, on the ω − p axis, it crosses the line ω = 0 with a
positive derivative as many times as it crosses it with a negative derivative.
Therefore there are as many left movers as the right movers in the effective
theory.

2.2.4 Proof in 3+1 dimensions

As in the case of 1 + 1 dimensions, the proof of the no-go theorem relies
on the periodicity in the Brillouin zone. The idea of this intuitive proof is
to find oriented curves that pass through all the Weyl points. It becomes
imperative to decide if a given Weyl point is left-handed or right-handed, so
we first focus on that.

Weyl Points

Unlike the case of 1+1 dimensions, the touching of two bands is generic. This
is because a three-dimensional momentum p can satisfy the three conditions
required for two eigenvalues to be the same. But the touching of three bands
is NOT, because it requires eight conditions.

Hence we only consider the case of two-band touchings. These are only
physically relevant if they happen close to the Fermi Energy. Let us say that
the bands ωi(p) and ωi+1(p) touch each other at the energy ϵF. Then the
two-level Hamiltonian for those two bands may be expanded in the form:

H̃2(p) = ϵF +
(
p− pdeg

)
b+

(
p− pdeg

)
κ
Vκ

ασ
α +O

((
p− pdeg

)2)
(2.39)

for constant vector b and constant tensor V and the degeneracy point pdeg.
We took the Taylor expansion for the Hamiltonian because the bands are
not analytic and then we wrote each coefficent of the Taylor expansion as
a sum of Pauli matrices σα and the identity. Notice that around the point
p = pdeg, the Hamiltonian almost becomes the identity matrix, since there
are two linearly orthogonal state vectors |ωi(p)⟩ and |ωi+1(p)⟩ that have the
same eigenvalue. If we subtract the constant energy ϵF +

(
p− pdeg

)
b and

define a practical momentum, ppr = p− pF, then the new Hamiltonian is

H̃2(p) =
(
ppr

)
κ
Vκ

ασ
α (2.40)

which is a Weyl Hamiltonian. It is right-handed if detV is positive and
left-handed if detV is negative.
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2.2. Fermion Doubling

Deciding the curves

As promised, we need to find curves that pass through all the Weyl points
in the three-dimensional momentum space S1×S1×S1. For any band ω̃i(p),
consider the curve defined by:

{p|⟨a|ω̃i(p)⟩ = 0} (2.41)

where
⟨a|ω̃i(p)⟩ = a∗1ψ

(i)
1 + a∗2ψ

(i)
2 + ...+ a∗Nψ

(i)
N (2.42)

for an arbitrary vector |a⟩. Here, ω̃i(p) is defined so that it is analytic in
p, so even though it is an eigenfunction, it can change its eigenvalues across
a degeneracy point. This means that if ω1(p) and ω2(p) touch at p = p∗,
then it may happen that ω̃1(p+p′) = ω1(p+p′) and ω̃1(p−p′) = ω2(p−p′)
for small enough p’.

For a general |a⟩, equation (2.41) specifies a one dimensional curve since
⟨a|ω̃i(p)⟩ ∈ C and thus equating it to 0 gives two independent conditions.
Since the two-level Hamiltonian becomes identity at a degeneracy point pdeg,
it carries a two-dimensional complex vector space -{

c1 |ωi(pdeg)⟩+ c2 |ωi+1(pdeg)⟩
}

(2.43)

Thus we may tune the two independent parameters c1 and c2 so that we
can obey the condition (2.41) around the point p = pdeg at least along one
path, and therefore all such degeneracy points must be a part of the given
curve. Along the curve, we can plot the eigenvalue ω̃i(p), and ω̃i(p) would
jump from ωi(p) to ωi+1(p) as many times as it would jump from ωi+1(p)
to ωi(p) because of the periodicity of the lattice.

Orienting the curve

If the curve has a consistent orientation such that everytime the curve jumps
from a lower-ordered eigenvalue to a higher-ordered eigenvalue, it is a right-
handed fermion and vice-versa, then our proof of the no-go theorem is com-
plete. According to the article [1], one consistent orientation may be defined
as follows -

Make a small circle S1 around the curve. Decide an orientation such
that the phase of |ωi(p)⟩ increases on the circle according to the right-hand
screw rule.

It can be proved that this orientation stays consistent along the curve.
If ω̃i(p) increases (decreases) along this orientation, then we can also prove
that the corresponding degeneracy point is right(left)-handed. Hence the
proof is complete.
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Chapter 3

Kitaev Lattices

3.1 Kitaev Model

We begin by reviewing Kitaev’s toy lattice model for a 1d spinless p-wave
superconductor. The Kitaev model has the following Hamiltonian [2, 18]:

H = −µ
∑
x

c†xcx −
1

2

∑
x

{
tc†xcx+1 +∆eiϕcxcx+1 + h.c.

}
(3.1)

where the operators cx and c†x are one-component complex fermions and h.c.
denotes the hermitian conjugate. Here µ is the chemical potential, t is the
nearest-neighbour hopping strength, ∆ is the p-wave pairing amplitude and
ϕ is the corresponding superconducting phase. We may choose t ≥ 0 and
∆ ≥ 0 without any loss of generality.

The ∆ term breaks the U(1) symmetry, thus the operator N =
∑

x c
†
xcx

does not commute with the Hamiltonian for ∆ ̸= 0, and there is no charge
conservation in this system. The lack of U(1) symmetry here makes this the
right playground to search for a single copy of Weyl fermions.

We use the standard anti-commutation relations:

{cx, c†y} = δx,y, {cx, cy} = 0 & {c†x, c†y} = 0 (3.2)

If we take the length of the chain N to be infinite, we may use the Fourier
transformed operators to express things in the momentum basis:

3.1.1 Momentum-space

cx =
1√
2π

∫ π

−π
dk cke

ikx, c†x =
1√
2π

∫ π

−π
dk c†ke

−ikx (3.3)

The anti-commutation relations of Equation (3.2) translate to:

{ck1 , c
†
k2
} = δ(k1 − k2), {ck1 , ck2} = 0 & {c†k1 , c

†
k2
} = 0 (3.4)

13



3.1. Kitaev Model

Even though we have spinless fermions in this model, we use the matrix
notation to account for the spinful generalization later on. Let us look at
how the different terms translate in the momentum basis:

− µ
∑
x

c†xcx = −µ
∫ π

−π
dk1

∫ π

−π
dk2 c

†
k2
ck1
∑
x

eik1x−ik2x

2π

= −µ
∫ π

−π
dk1

∫ π

−π
dk2 c

†
k2
ck1δ(k1 − k2)

= −µ
∫ π

−π
dk c†kck = −µ

2

∫ π

−π
dk c†kck −

µ

2

∫ π

−π
dk c†−kc−k

= −µ
2

∫ π

−π
dk c†kck +

µ

2

∫ π

−π
dk cT−k(c

†
−k)

T − µ

2

∫ π

−π
dk δ(0)

(3.5)

The δ(0) term is an artefact of taking the length of the chain N to be infinite.
We ignore it since it doesn’t affect the dynamics. Moreover, if we initially

defined the Hamiltonian with terms like 1
2

(
c†xcx − cxc

†
x

)
instead of c†xcx, we

would not have this divergence.
The other terms of the Hamiltonian may be expressed in the momentum

basis similarly. For example,

− t

2

∑
x

c†xcx+1 = − t

2

∫ π

−π
dk1

∫ π

−π
dk2 c

†
k2
ck1e

ik1
∑
x

eik1x−ik2x

2π

= − t

2

∫ π

−π
dk1

∫ π

−π
dk2 c

†
k2
ck1e

ik1δ(k1 − k2) = − t

2

∫ π

−π
dk c†kcke

ik

(3.6)

As the net hopping term contains both the above term and its hermitian
conjugate, we replace the exponential eik with 2 cos(k) instead. Thus,

− t

2

∑
x

{
c†xcx+1 + h.c.

}
= −t

∫ π

−π
dk c†kck cos(k)

= − t

2

∫ π

−π
dk c†kck cos(k)−

t

2

∫ π

−π
dk c†−kc−k cos(k)

= − t

2

∫ π

−π
dk c†kck cos(k)−

t

2

∫ π

−π
dk c†−kc−k cos(k)

= − t

2

∫ π

−π
dk c†kck cos(k) +

t

2

∫ π

−π
dk cT−k

(
c†−k

)T
cos(k)− t

2

∫ π

−π
dk δ(0)

(3.7)
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3.1. Kitaev Model

For the last term, we find:

−∆eiϕ
∑
x

cTx cx+1 = −∆eiϕ
∫ π

−π
dk1

∫ π

−π
dk2 c

T
k2ck1e

ik1δ(k1 + k2)

= −∆eiϕ
∫ π

−π
dk cT−kcke

ik = −∆eiϕ
∫ π

−π
dk cTk c−ke

−ik

= ∆eiϕ
∫ π

−π
dk cT−kcke

−ik = −i∆eiϕ
∫ π

−π
dk cT−kck sin(k)

(3.8)

Then in the standard Bogoliubov-de Gennes form, the Hamiltonian may be
written as:

H =
1

2

∫ π

−π
dk
[
c†k cT−k

] [ ϵk ∆̃∗
k

∆̃k −ϵk

] [
ck

(c†−k)
T

]
(3.9)

where ∆̃k = −i∆eiϕ sin(k) and ϵk = −µ− t cos(k).

3.1.2 Spectrum and Symmetries

The Hamiltonian matrix is Hermitian, and any 2× 2 Hermitian matrix may
be written as a linear combination of the Pauli matrices and the identity
matrix with real coefficients. In the basis that we have used, it may be
expressed in the following form:

Hk = ℜ(∆̃k)σ
x + ℑ(∆̃k)σ

y + ϵkσ
z (3.10)

Notice that there is a redundancy. The coefficients of the σx and σy ma-
trices are odd in k and the coefficient of the σz matrix is even in k. This
redundancy points to the particle-hole symmetry of the Bogulibov deGennes
formalism. If we define the operator -

Ck =

[
ck

(c†−k)
T

]
(3.11)

then
(
C†
−k

)T
= σxCk. All the other terms (for instance, any even function

of k that is a coefficient of σx) cancel out. .
For an even more general higher N -band model (2N×2N Hamiltonian),

the coefficients of this expansion are Hermitian matrices. The coefficients
of the σx and σy matrices are either odd (in k) symmetric matrices or even
anti-symmetric matrices. The coefficient of the σz matrix must be an even
symmetric matrix or an odd anti-symmetric matrix.
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3.2. Majorana basis

Using the expansion in (3.10), it is obvious that the eigenvalues of the

matrix are ±
√
ϵ2k + |∆̃k|2. The eigenvectors may also be found by making

use of this observation. A topological phase transition takes place when the
gap closes. For gapless excitations, |∆̃k|= 0 and ϵk = 0. They may only
happen at k = 0 or k = π when µ is fine-tuned to −t or t.

3.1.3 Effective Theory

Let us describe an effective theory of the above lattice that captures the
topological phase transition. Choose t = 1, µ′ = 1 + µ and a small cutoff Λ
such that sin(k) ≈ k and cos(k) ≈ 1−k2/2. 1 Then the effective Hamiltonian
is:

Heff =
1

2

∫ Λ

−Λ
dk
[
c†k cT−k

] [−µ′ + k2/2 i∆e−iϕk
−i∆eiϕk µ′ − k2/2

] [
ck

(c†−k)
T

]
(3.12)

If we further do a re-scaling transformation k → Λ0k such that ck → Λ
−3/2
0 ck

and Λ
Λ0

→ ∞, then our effective theory becomes:

Heff =
1

2

∫ ∞

−∞
dk
[
c†k cT−k

] [−µC + k2/2 v∗Ck
vCk µC − k2/2

] [
ck

(c†−k)
T

]
(3.13)

such that µC = µ′Λ−2
0 and vC = −i∆eiϕΛ−1

0 . Thus the features of the lattice
theory near the point µ → −1 and ∆ → 0 may be captured by the above
theory. The Hamiltonian above looks like that of a p-wave superconductor.
Thus we may be able to guess a lattice model for our theory.

3.2 Majorana basis

The emergent quasiparticles in the topological superconductors, like the one-
dimensional Kitaev lattice that we discussed above, are Majorana fermions.
These warrant the use of a modified Majorana basis. The Majorana basis
is useful other ways as well - for example, as we will show later in this
section, it connects topological superconductors and weyl semimetals via a
basis change [19]. We borrow the bulk of the discussion in this section from
[3].

1A careful reader may have noticed that we find only one nodal point k = 0 in the low-
energy (and not two as one might intuitively expect from the discussion in the previous
chapter). This happens because we are considering bands for real fermions instead of
complex and only half the Brillouin zone is occupied, so the actual band structure is not
analytic.
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3.2. Majorana basis

The Majorana operators are defined as:

γ+,s(x) =
1√
2
(cs(x) + c†s(x))

γ−,s(x) =
1

i
√
2
(cs(x)− c†s(x))

(3.14)

and the Hermitian Majorana field operator is:

γ(x) =

(
γ+,s(x)
γ−,s(x)

)
(3.15)

Thus the Majorana basis-transformation acts as -

(
c(x)(
c†(x)

)T) =

(
1√
2

(
1 i
1 −i

)
⊗ I2

)
γ(x) & (3.16)

(
c†(x) cT (x)

)
= γ†(x)

(
1√
2

(
1 1
−i i

)
⊗ I2

)
, (3.17)

If we define τ i to be the pseudospin basis mixing particles and anti-particles
in the Nambu basis, then the following operators transform as -

τx → τ z , τy → −τx and τ z → −τy (3.18)

Under an anti-clockwise rotation of 120◦ where n⃗ = 1√
3
(1,−1, 1), we get the

following rotation matrix -

R = cos

(
120◦

2

)
+ i sin

(
120◦

2

)
(n⃗.τ⃗)

=
I

2
+
i

2
(τx − τy + τ z)

(3.19)

which gives the same rotation under the transformation τ i → Rτ iR†.

3.2.1 Kitaev Hamiltonian

The momentum-space Fourier transform is given by -[
γ+,s(x)
γ−,s(x)

]
=

1√
2π

∫ π

−π
dk

1√
2

(
1 1
−i i

)[
cs(k)

c†s(−k)

]
eikx (3.20)
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3.2. Majorana basis

Therefore, the Fourier transformed Majorana operators are defined as -

γ(k) =

[
γ+,s(k)
γ−,s(k)

]
=

1√
2

[
c(k) + (c†(−k))T

−ic(k) + i(c†(−k))T
]

(3.21)

The Hamiltonian for the Kitaev wire, given by Equation 3.9, transforms
as -

H =
1

2

∫ π

−π
dk γT (−k)

(
ℜ(∆̃k)σ

z −ℑ(∆̃k)σ
x − ϵkσ

y
)
γ(k) (3.22)

The anti-commutation relations in Equation (3.2) translate to -

{γ+,i(x
′), γ+,j(x)} = δijδ(x− x′)

{γ−,i(x
′), γ−,j(x)} = δijδ(x− x′)

{γ+,i(x
′), γ−,j(x)} = 0

(3.23)

3.2.2 Weyl Fermions in Majorana Basis

We write the Weyl fermion in the Majorana basis. The Hamiltonian for the
right-handed Weyl fermion was given to be:

H =

∫
d3k c†k kiσ

i ck =
1

2

(∫
d3k c†k kiσ

i ck −
∫
d3k c†−k kiσ

i c−k

)
=

1

2

(∫
d3k c†k kiσ

i ck −
∫
d3k (c−k)

T ki
(
σi
)T (

c†−k

)T)
(3.24)

which may be expressed in the Nambu-space as -

H =
1

2

∫ ∞

−∞
dk
[
c†k cT−k

] [kiσi 0
0 ki(σ

i)T

] [
ck

(c†−k)
T

]
(3.25)

or the Hamiltonian matrix may be written as -

H(k) =
1

2
(kxI2 ⊗ σx + kyτ

z ⊗ σy + kzI2 ⊗ σz) (3.26)

which transforms to -

H =
1

2

∫ ∞

−∞
d3k γT (−k) (kxI2 ⊗ σx − kyτ

y ⊗ σy + kzI2 ⊗ σz) γ(k) (3.27)
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3.2. Majorana basis

3.2.3 Discrete symmetries

Mass fields are the terms which do not depend on k. For a two-band model
(4 × 4 Hamiltonian), there are 16 linearly independent Hermitian matrices
- which we could denote by the direct products of the Pauli matrices. Fol-
lowing the discussion in Section 3.1.2, The coefficients of the τ z, τx and I2
matrices are anti-symmetric matrices - of which there is only one - σy. The
coefficient of the τy matrix must be a symmetric matrix - of which there
are three choices - σx, σz and I2. Thus there are 6 possible mass terms in a
two-band model - τy ⊗ σx, τy ⊗ σz, τy ⊗ I2, τ

x ⊗ σy, τ z ⊗ σy and τy ⊗ I2.
Even though they could represent different physical quantities in different
models, these are the only bilinear k-independent terms that could be added
to a similar model.

In the Majorana representation [3], the parity symmetry P is represented
as follows -

Pγ(t, x)P = τyγ(t,−x) (3.28)

The action of the time reversal T is given as follows -

Tγ(t, x)T = τ z ⊗ (iσy) γ(−t, x) (3.29)

The charge conjugation C is simply represented as -

Cγ(x)C = γ(x) (3.30)

In Section 2.1.4, we discussed that the operators P and C were linear
and unitary and T was anti-linear and anti-unitary. This information may
be codified into the following equations -

C2 = 1, P 2 = 1 and T 2 = −1 (3.31)

Cα = α∗C, Pα = αP and Tα = α∗T (3.32)

where α is any complex number.

3.2.4 Connecting Weyl fermions with odd-parity
superconductors

The matrices αi = (τy, τ z ⊗ sy, τx ⊗ sy) form an SU(2) representation. Un-
der an anti-clockwise rotation of 120◦ where n⃗ = 1√

3
(1, 1, 1), we get the

following rotation matrix -

R = cos

(
120◦

2

)
+ i sin

(
120◦

2

)
(n⃗.α⃗)

=
I

2
+
i

2
(τy + τ z ⊗ sy + τx ⊗ sy)

(3.33)
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3.2. Majorana basis

TheWeyl kinetic terms rotate into the 3-d odd-parity superconductor kinetic
terms (which we discuss in the next chapter) under this rotation:

I2 ⊗ sx → τ z ⊗ sz, I2 ⊗ sz → τ z ⊗ sx, τy ⊗ sy → τx ⊗ I2 (3.34)

where the rotation is given by O → ROR†. Under the same rotation, the
mass terms I2 ⊗ sy, τy ⊗ sx and τy ⊗ sz remain invariant, because each of
them commute with all the generators of the SU(2) group.

The other mass operators form a spin-1 representation of the SU(2), with
the following rotations:

τx ⊗ sy → τ z ⊗ sy, τy ⊗ I2 → τx ⊗ sy, τ z ⊗ sy → τy ⊗ I2 (3.35)

Order parameter is i. τx⊗sy is s-wave pairing which doesn’t break time-
reversal. τ z ⊗ sy is s-wave pairing which breaks time reversal. In general,
0 and π phases do not break time reversal symmetry. The τ z ⊗ sy term
has phase π/2, so it does. The terms which were invariant under the above
SU(2) are actually the magnetic field terms, and they break the rotation
symmetry.
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Chapter 4

Weyl Fermions in a
Kitaev-like Lattice

4.1 Lattice completion of 3-d p-wave
superconductor

The nodal points in a p-wave superconductor have half the number of degrees
of freedom as the Weyl fermions, so we expect to be able to combine them to
get a Weyl fermion. To check if any unwanted lattice effects do not thwart
this expectation, we propose a Kitaev-like lattice completion of the 3-d p-
wave superconductor. Then we study the phase-diagram of the given lattice
to confirm if it is indeed the case.

4.1.1 3-d p-wave model

In the Majorana basis, the Hamiltonian for the continuous 2-component 3-d
p-wave superconductor is given to be:

Hp-wave =

∫ ∞

−∞
d3k

[
γ+(−k) γ−(−k)

][
− vkxτ

z ⊗ σz + vkyτ
x ⊗ I2+

+ vkzτ
z ⊗ σx +

(
µ−

∑
i

k2i /2

)
τy ⊗ I2 +∆I

Sτ
x ⊗ σy −∆B

S τ
z ⊗ σy+

Bxτ
y ⊗ σx +−ByI2 ⊗ σy ++Bzτ

y ⊗ σz
] [
γ+(k)
γ−(k)

]
(4.1)
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4.1. Lattice completion of 3-d p-wave superconductor

∆I
S and ∆B

S are the s-wave pairing terms. The term ∆I is time-reversal
invariant, while the ∆B term is not. In the Nambu basis, this looks like:

Hp-wave =

∫ ∞

−∞
d3k

[
c†k cT−k

][
− vkxτ

x ⊗ σz − vkyτ
y ⊗ I2 + vkzτ

x ⊗ σx+

−

(
µ−

∑
i

k2i /2

)
τ z ⊗ I2 −∆I

Sτ
y ⊗ σy −∆B

S τ
x ⊗ σy −Bxτ

z ⊗ σx+

−ByI2 ⊗ σy −Bzτ
z ⊗ σz

] [
ck

(c†−k)
T

]
(4.2)

Note that ck and c†k are two-component objects.

4.1.2 Lattice completion

Based on how we found an effective theory of the Kitaev model in (3.13),
we guess that the following discrete Kitaev-like Hamiltonian will provide us
the lattice completion of the ”effective” theory in (4.2):

H =

∫ π

−π
d3k

[
c†k cT−k

][
− v sin(kx)τ

x ⊗ σz − v sin(ky)τ
y ⊗ I2+

+ v sin(kz)τ
x ⊗ σx −

(
µ+ t

∑
i

cos(ki)

)
τ z ⊗ I2 −∆I

Sτ
y ⊗ σy+

−∆B
S τ

x ⊗ σy −Bxτ
z ⊗ σx −ByI2 ⊗ σy −Bzτ

z ⊗ σz
] [

ck
(c†−k)

T

] (4.3)

The discrete version is therefore:

H = −µ
∑
x,y,z

c†x,y,zcx,y,z −
1

2

∑
x,y,z

{tc†x,y,zcx+1,y,z+

+ tc†x,y,zcx,y+1,z + tc†x,y,zcx,y,z+1 + h.c.}+

−
∑
x,y,z

c†x,y,z

(
B⃗.σ⃗

)
cx,y,z −

1

2

∑
x,y,z

{vcx,y,z(σz)cx+1,y,z+

+ ivcx,y,zcx,y+1,z − vcx,y,z(σ
x)cx,y,z+1 + h.c.}+

− 1

2

∑
x,y,z

(∆B
S + i∆I

S)cx,y,z(σ
y)cx,y,z

(4.4)
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4.1. Lattice completion of 3-d p-wave superconductor

It is easy to see that the off-diagonal terms should be Hermitian conjugates
of each other (after solving like we did in (3.8), the Hermitian conjugate of
one term will be the other off-diagonal term.) The s-wave pairing refers to
terms of the form cxcx. So in the absence of spin, there are no s-wave terms.

4.1.3 Spectrum and Phase Diagram

We turn off the s-wave pairing and the magnetic field. We get the following
spectrum:

(
E±

k

)2
=

(
µ+ t

∑
i

cos(ki)

)2

+ v2 sin2(kz) + v2 sin2(kx) + v2 sin2(ky)

(4.5)

Since the v term breaks the U(1) symmetry, the number operator doesn’t
commute with the Hamiltonian. That’s why the energy isn’t simply linear
in µ. The topological phase transition occurs when one of the bands cross
zero energy. Thus it can only happen at the isolated points µ = ±t,±3t.

Turning on the magnetic field B or the s-wave pairing ∆I
S term separates

the bands. To finally obtain a weyl effective fermion near zero energy, we
need to reduce the no of degrees of freedom and thus separate the bands.
We choose to break the time-reversal symmetry by adding a magnetic field
B > 0 in the z-direction. Thus we get the following spectrum:

(
E±

k

)2
=

B ±

√√√√(µ+ t
∑
i

cos(ki)

)2

+ v2 sin2(kz)


2

+

+ v2 sin2(kx) + v2 sin2(ky)

(4.6)

Nodal Points

The nodal points are the points where one or more bands touch zero energy.
In our case, only E−

k can be equal to 0. Since sin(ky) = sin(kz) = 0, kx and
ky are both either 0 or π. We first fix the value of kx and ky and analyze
the structure of the nodes.

Setting t = 1 and µ′ = µ+ cos(kx) + cos(ky), we get:

sin(kx) = 0, sin(ky) = 0 & f(cos(kz)) =(
µ′ + cos(kz)

)2
+ v2(1− cos2(kz))−B2 = 0

(4.7)
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4.1. Lattice completion of 3-d p-wave superconductor

Figure 4.1: A plot of no of nodal points in the µ − B plane for v < 1 (but
finite). The yellow, green, blue and red colors indicate the points with 2, 4,
6 and 8 nodes respectively. Notice that this is consistent with Figure 4.1.4
close to µ = −3 and near B = 0. The nodal points shift to higher k as
we move away from the point. The phase diagram retains this structure for
v < 1. For v > 1, there may even exist points with 16 nodes, but they do
not show up in the limit that we have chosen.

The necessary and sufficient condition for exactly one root of the quadratic
equation f(z) to lie between −1 and 1 is:

f(1)f(−1) =
((
µ′ + 1

)2 −B2
)((

µ′ − 1
)2 −B2

)
< 0 (4.8)

Note that this doesn’t depend on the value of v (even when v2 = 1 and f(z)
is linear.) The other calculations have been relegated to Appendix A.

Given the value of kx and ky, the no of gapless points are twice the no
of roots of the above quadratic equation, since cos(kz) will attain each root
twice in the Brillouin zone. At a given value of B and µ, the total no of nodal
points will be the sum of the gapless points for all allowed values of kx and
ky, and the conditions (4.8) and (A.2) depend on µ′ = µ+cos(kx)+ cos(ky)
rather than just µ, so these calculations are fairly complicated.
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4.1. Lattice completion of 3-d p-wave superconductor

Band Touching

For E+
k = E−

k , we get the following condition -√√√√(µ+ t
∑
i

cos(ki)

)2

+ v2 sin2(kz) = 0 (4.9)

Setting t = 1, we get -

kz = 0, µ+ 1 + cos(kx) + cos(ky) = 0 (4.10)

kz = π, µ− 1 + cos(kx) + cos(ky) = 0 (4.11)

For generic values of −3 < µ < 3, the upper and lower bands touch on a
1-dimensional curve.

4.1.4 Effective Field Theory

Let us describe an effective theory of our model described by the Hamilto-
nian:

H =

∫ π

−π
d3k

[
c†k cT−k

][
− v sin(kx)τ

x ⊗ σz − v sin(ky)τ
y ⊗ I2+

+ v sin(kz)τ
x ⊗ σx −

(
µ+ t

∑
i

cos(ki)

)
τ z ⊗ I2 −Bzτ

z ⊗ σz
] [

ck
(c†−k)

T

]
(4.12)

around the point µ → −3 and B → 0. Choose t = 1 and µ′ = −3 + µ.
According to the phase diagram and the spectrum, it can be seen that
there are two nodal points around the point k = 0 and no others in the
limit v2 > µ. So we choose a small cutoff Λ such that sin(ki) ≈ ki and
cos(ki) ≈ 1− k2i /2 to get the full low-energy effective Hamiltonian:

Heff =

∫ Λ

−Λ
d3k

[
c†k cT−k

][
− vkxτ

x ⊗ σz − vkyτ
y ⊗ I2 + vkzτ

x ⊗ σx+

− µ′τ z ⊗ I2 −Bzτ
z ⊗ σz +

k2

2
τ z ⊗ I2

] [
ck

(c†−k)
T

]
(4.13)
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4.1. Lattice completion of 3-d p-wave superconductor

Under a re-scaling transformation k → Λ0k such that ck → Λ
−5/2
0 ck and

Λ
Λ0

→ ∞, we may rewrite our effective theory as:

Heff =

∫ ∞

−∞
d3k

[
c†k cT−k

][
− vCkxτ

x ⊗ σz − vCkyτ
y ⊗ I2 + vCkzτ

x ⊗ σx+

− µCτ
z ⊗ I2 −BCτ

z ⊗ σz +
k2

2
τ z ⊗ I2

] [
ck

(c†−k)
T

]
(4.14)

such that µC = µ′Λ−2
0 , BC = BzΛ

−2
0 and vC = vΛ−1

0 . Thus the features
of the lattice theory near the point µ → −3, B → 0 and v → 0 may be
captured by theory of a 3-d p-wave superconductor with finite parameters
µC, BC and vC.

The spectrum is given by:

(
E±

k

)2
=

BC ±

√√√√(µC − 1

2

∑
i

k2i

)2

+ v2Ck
2
z


2

+ v2Ck
2
x + v2Ck

2
y (4.15)

Nodal Points

Again, only E−
k may be equal to 0, under the following conditions -

kx = 0, ky = 0 & f(k2z) =

B2
C −

(
µC − k2z

2

)2

− v2Ck
2
z = 0

(4.16)

Band Touching

For E+
k = E−

k , we get the following condition -√√√√(µC − 1

2

∑
i

k2i

)2

+ v2Ck
2
z = 0 (4.17)

Thus, the upper and lower bands touch on a one-dimensional circle in mo-
mentum space for µC > 0:

kz = 0, µC − 1

2

(
k2x + k2y

)
= 0 (4.18)
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4.2. Lower-band physics

Figure 4.2: Nodal points in a continuous p-wave superconductor for v2C =
1/2. The yellow and green colors indicate the points with 2 and 4 nodes
respectively. The phase diagram has a similar structure for all values of vC.
This phase diagram is consistent with the one present in [3].

4.2 Lower-band physics

We have already found a continuum approximation of the region µ → −3
and B → 0. It turns out to be the same as the 3-d p-wave superconductor,
with the continuum parameters vC, µC and BC. We will refer to them
without the subscript ”C” from here onwards. We want to find a regime
where the upper band doesn’t interfere with the physics of the lower band,
so that we find an effective Hamiltonian for our lower band physics.

4.2.1 Schrieffer-Wolff Transformation

If a Hamiltonian is a sum of Hamiltonians at different energy scales, then the
effective low-energy Hamiltonian may be found by just ignoring the high-
energy part. If it is not a sum, then it may be diagonalized to decouple the
different energy scales. Schrieffer-Wolff Transformation is a unitary trans-
formation designed to do just that - project out the high-energy modes by
the method of perturbative diagonalization.

If we are able to find a matrix Sk such that [Hk0 , Sk] = Vk, then using
the Baker-Campbell-Haussdorf relation, we would get the following:

H′
k = Hk + [Sk,Hk] +

1

2
[Sk, [Sk,Hk]] + ...

= Hk0 +
1

2
[Sk, Vk] +O(V 3

k )

(4.19)
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4.2. Lower-band physics

which is diagonal up to second order in Vk.

4.2.2 Our case

We may divide our Hamiltonian H into the following two parts -

Hk = Hk0 + Vk

Hk0 = −vkxτ z ⊗ σz + vkyτ
x ⊗ I2 + µτy ⊗ I2 +Bzτ

y ⊗ σz

Vk = vkzτ
z ⊗ σx

(4.20)

Notice that Hk0 is block diagonal in the 2 − 4 basis, where the indices
i = 1, 2, 3 and 4 refer to matrix indices. The Vk term acts as a coupling term
between the upper band and the lower band, so it is not block diagonal in
the chosen 2− 4 basis.

Let our unitary transformation be such that the new Hamiltonian is
H′

k = eSkHke
−Sk . Solving for the matrix Sk such that [Hk0 , Sk] = Vk, we

find an exact solution -

Sk =
ikzv

2µ
τx ⊗ σx (4.21)

Then the effective Hamiltonian is:

H′
k = Hk0 +

k2zv
2

2µ
τy ⊗ I2 (4.22)

Since the above solution has been truncated to quadratic order in kz, it is
only valid for kz < Λ1 for some cutoff Λ1. We also do not want the lower
and the upper bands to touch each other in this regime, because then we
will also have to add the upper-band Hamiltonian separately, so we must
have the condition kx, ky < Λ2 where Λ2 <<

√
2µ (using equation (4.18)).

In the 2-4 basis, we can project this out to get:

Heff =

∫
d3k

[
γ2(−k) γ4(−k)

][
vkxσ

z + vkyσ
x+

+

(
µ−Bz +

k2zv
2

2µ

)
σy
] [
γ2(k)
γ4(k)

] (4.23)

Here σ matrices represent the indices of the effective degrees of freedom. The
Majorana fields do not have any k-dependence in the leading order under
the Scrieffer-Wolff transformation, so their anti-commutation relations are
unaffected:

{γi(x′), γj(x)} = δijδ(x− x′) i, j ∈ {2, 4} (4.24)
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4.2. Lower-band physics

Notice that the Hamiltonian is degenerate at the points (0, 0,±kz0),
where kz0 =

√
2µ(B−µ)

v . For these to exist at the energy scale corresponding

to Λ1, we must also have

√
2µ(B−µ)

v < Λ1. We may now expand this around
the degeneracy points -

Heff =

∫
d3k

[
γ2,R(−k) γ4,R(−k) γ2,L(−k) γ4,L(−k)

][
vkxI2 ⊗ σz+

+ vkyI2 ⊗ σx +

√
2(B − µ)

µ
vkzτ

z ⊗ σy
]

γ2,R(k)
γ4,R(k)
γ2,L(k)
γ4,L(k)


(4.25)

where we label the points around (0, 0,+kz0) as right-moving, and the points
around (0, 0,−kz0) as left-moving and τ matrices represent the left-right
pseduospin indices.

The anti-commutation relations are still unaffected, because the left-
handed and the right-handed moving fermions already anti-commute be-
cause of different momenta:

{γi,a(k), γj,b(k′)} = δijδabδ(k − k′)

i, j ∈ {2, 4} & a, b ∈ {L,R}
(4.26)

Usually, the Majorana operators odd in k are symmetric and real matri-
ces. But in this case, τ z ⊗ σy is anti-symmetric and purely imaginary.

This problem arises because the operators γi,L(x) and γi,R(x) are non-
Hermitian. We can observe this by noting that (γi,L(k))

† = γi,R(−k). Thus
(γR(x))

† = γL(x), and we will have to modify the charge-conjugation oper-
ator. Alternatively, we redefine our Fermions by doing a rotation in the τ
space to make things look more Hermitian.

γi,+(x) =
γi,R(x) + γi,L(x)√

2

γi,−(x) =
γi,R(x)− γi,L(x)√

2i

(4.27)

This is exactly the same transformation as the one we used to define the Ma-
jorana operators in Equation (3.14), thus we may directly use the operator
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4.3. Interactions

transformation Equation (3.18) to get a right-handed Weyl fermion:

Heff =

∫
d3k

[
γ2,+(−k) γ4,+(−k) γ2,−(−k) γ4,−(−k)

][
vkxI2 ⊗ σz+

+ vkyI2 ⊗ σx −

√
2(B − µ)

µ
vkzτ

y ⊗ σy
]

γ2,+(k)
γ4,+(k)
γ2,−(k)
γ4,−(k)


(4.28)

which is the same as the Majorana representation of a Weyl fermion that we
found in Equation (3.27), ignoring the scaling of the coupling parameters.

4.3 Interactions

The general quartic interaction for a potential V (x) is given to be:

Hint =

∫
dqV (q)ρ(q)ρ(−q) (4.29)

where, the density operator is given to be:

ρ(q) = −
∫
dqγ†(k)τy ⊗ I2γ(k+ q) (4.30)

Ignoring the higher-band physics according to the last section, we are left
with the following low-energy operator -

ρ(q) = −
∫
dqγ†(k)σyγ(k+ q) (4.31)

where σi stands for the pseudo-spin in the last two remaining bands. Thus
the density operator is only defined around the points q = (0, 0,−kz0),
q = (0, 0, 0) and q = (0, 0, kz0), where Splitting these into left-moving and
right-moving fermions, we find the effective quartic interaction -

Hint =− 4V (0)

∫
dq [γ1,L(−k1)γ2,R(k1 + q)γ1,L(−k2)γ2,R(k2 − q)] +

− 4V (0)

∫
dq [γ2,L(−k1)γ1,R(k1 + q)γ2,L(−k2)γ1,R(k2 − q)] +

8 (V (0)− V (2k0))

∫
dq [γ1,L(−k1)γ2,R(k1 + q)γ2,L(−k2)γ1,R(k2 − q)]

(4.32)
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4.3. Interactions

where k0 = (0, 0, kz0). The first two terms are the forward-scattering terms
and the last term is the backward-scattering term. Here, the forward scat-
tering terms do not affect the dynamics, since there is no fourth order local
term made out of just two Majorana operators. This is only true because
our effective low-energy degrees of freedom were essentially spinless (only
one complex fermion). We may take a gradient expansion for the forward
scattering terms, but we ignore it for now as it is highly irrelevant. The
backward scattering term may also be expressed in terms of the γ+(x) and
γ−(x) operators that we defined earlier.

Hint = g

∫
dx γ1,+(x)γ1,−(x)γ2,+(x)γ2,−(x) (4.33)
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Chapter 5

Conclusion

We could find a lattice model with a single copy of Weyl fermion. We did
this by using nodal points in 3-d p-wave superconductors, which worked
because they do not have any charge conservation.

The next goal would be to study the four-fermion interaction in this
lattice to see if the phase survives in the strong-coupling limit. If this phase is
robust, we might be able to simulate a single Weyl fermion on an engineered
Kitaev-like lattice.
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Appendix A

Roots of a Quadratic
Equation

The necessary and sufficient condition for exactly one root of the quadratic
equation f(z) = az2 + bz + c to lie between −1 and 1 is:

f(1)f(−1) < 0 (A.1)

For both the roots to lie between −1 and 1, we require the following condi-
tions:

D = b2 − 4ac > 0, af(1) > 0, af(−1) > 0 &

∣∣∣∣− b

2a

∣∣∣∣ < 1 (A.2)

The D > 0 condition ensures that there are two roots of the quadratic
equation. The next two conditions af(±1) > 0 ensure that both of those
roots either lie between −1 and 1 or that both lie outside it. Notice that this
cannot be true for the one-root condition f(1)f(−1) < 0. The last condition
constrains the vertex of the parabola f(z) to lie between −1 and 1, so these
set of conditions are necessary and sufficient.

For the expression f(z) = az2 + bz+ c and D = b2 − 4ac to have exactly
one root greater than 0, we must have:

af(0) < 0 (A.3)

The necessary and sufficient conditions for it to have two roots greater than
zero, we must have

D > 0, af(0) > 0 & − b

2a
> 0 (A.4)
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